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Opinion

Inavolisib: A Selective Inhibitor of Mutant PI3Kα for the 
Treatment of Breast Cancer

Surya K. De*

Breast cancer is one of the deadliest cancers that occurs in women. 
It remains the most invasive and common cancer among women 
worldwide. In 2023, over 2.3 million new cases were reported, re-
sulting in approximately 685,000 deaths globally.1,2 Despite early 
detection and current treatment options such as surgery, radiation 
therapy, chemotherapy, hormone-blocking therapy, targeted thera-
py, and immunotherapy, breast cancer remains the leading cause of 
cancer-related death in women.3–6 Breast cancer arises from sev-
eral gene mutations. A significant percentage of breast cancers in-
volve mutations in the phosphatidylinositol-3 kinase (PI3K)/v-akt 
murine thymoma viral oncogene homolog (AKT)/mammalian tar-
get of rapamycin (mTOR) pathway. Several PI3K inhibitors have 
been approved for treating various diseases. Alpelisib is currently 
the only selective PI3Kα inhibitor targeting breast cancer approved 
by the U.S. Food and Drug Administration (FDA); however, it is 
associated with several severe treatment-related adverse events.

Several biological processes, such as cell growth and prolifera-
tion, cell survival, protein synthesis, and glycolytic metabolism, 
are regulated by the PI3K/AKT/mTOR signaling cascade.7,8 PI3K 
is a class of lipid kinases composed of two subunits: the regula-
tory p85 and catalytic p110.9 The hyperactivation of this pathway 
induces and supports tumor growth.10,11 Class I PI3K has four iso-
forms: α, β, γ, and δ. Among these, PI3Kα is frequently overex-
pressed in cancer cells through gene amplification or mutation of 
the PIK3CA gene.7,11–13 Indeed, PI3Kα hyperactivation occurs in 
approximately 29% of all breast cancers and 40% of hormone re-
ceptor (HR)+/ human epidermal growth factor receptor 2 (HER2)-
breast cancer. The most common PIK3CA gene mutations are 
E545K and H1047R, with H1047R located in the catalytic region. 
Therefore, isoform-selective small-molecule PI3K inhibitors have 
gained significant interest in drug discovery for cancer treatment. 
Nevertheless, preclinical studies have demonstrated some draw-
backs of PI3K pathway inhibition. The inhibition of PI3K signal-
ing releases negative feedback, leading to activation of receptor 
tyrosine kinase signaling. This reactivation reengages the pathway, 
reducing drug efficacy. Additionally, most approved PI3K inhibi-

tors also inhibit other signaling molecules such as AKT, mitogen-
activated protein kinase (MAPK), tumor necrosis factor alpha 
(TNFα), C-X-C chemokine receptor type 4 (CXCR4), and CXCR5 
in cell-based assays. Consequently, many PI3K inhibitors cause 
severe adverse events that may limit their clinical use. Scientists at 
Genentech have discovered a new class of compound that inhibits 
mutant PI3K signaling via HER2-dependent degradation of mutant 
p110α.12,14–16

Development of inavolisib
Investigators from Genentech previously reported the discovery of 
taselisib as a PI3Kα inhibitor (Fig. 1).17,18 However, taselisib also 
inhibits PI3Kδ and shows only moderate selectivity over PI3Kβ 
and PI3Kγ. The inhibition of PI3Kδ causes gastrointestinal and 
other toxicities. They subsequently identified compound a, which 
has 22-fold selectivity for PI3Kα over PI3Kδ (Table 1). Com-
pound a inhibits PI3Kα (PI3Kα-H1047R) mutant HCC1954 cells 
and HDQ-P1 cells (PI3Kα wild-type). Introducing a polar group, 
such as trifluoromethyl on the triazole ring, resulted in compound 
b, which is more potent than compound a in biochemical assays. 
Replacing the oxygen linker with a cyclic nitrogen produced com-
pound c, with a Ki of 26 picomolar, but its selectivity over PI3Kδ 
was reduced to only eight-fold. This change also increased the top-
ological polar surface area, potentially reducing the compound’s 
cell permeability and bioavailability. Replacement of the aromatic 
triazole with an aliphatic oxygen-containing cyclic compound 
resulted in compound d, which exhibited greater selectivity over 
PI3Kδ (46-fold). Moving from a cyclic proline carboxamide to an 
acyclic alanine carboxamide, along with optimal positioning of the 
difluoro group, led to the clinical candidate inavolisib, which has 
361-fold selectivity against PI3Kδ. Interestingly, these compounds 
also function as strong mutant p110α degraders.19

Physicochemical properties of inavolisib
Brand name: Itovebi; Chemical name: (2S)-2-[[2-[(4S)-4-
(difluoromethyl)-2-oxo-oxazolidin-3-yl]-5,6-dihydroimidazo[1,2-
d1,4]benzoxazepin-9-yl]amino]propanamide; Chemical formula: 
C18H19F2N5O4; Molecular weight: 407.37; Topological polar sur-
face area: 113 Å2; Hydrogen bond donor count: 3; Hydrogen bond 
acceptor count: 9; Freely rotatable bond count: 5; Heavy atom 
count: 29; Number of rings: 4; LogD (pH 7.4): 0.8; Solubility: 38 
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µg/mL (aqueous pH 7.4); Rule of 5 violations: 0.
The molecular weight below 500, hydrogen bond donors fewer 

than five, hydrogen bond acceptors fewer than 10, and LogP less 
than five comply with Lipinski’s rule of 5. These characteristics 
suggest favorable oral absorption properties and oral bioavailable. 
Inavolisib does not violate Lipinski’s rule of 5. Its aqueous solubil-
ity and lower surface area enhance its oral bioavailability.

Synthesis
The synthesis of inavolisib starts from compound 1, as shown in 
Figure 2. Compound 1 is coupled with compound 2 in the presence 
of copper iodide and potassium carbonate in dioxane at 100°C to 

afford compound 3 in 50% yield.19 The bromo group in compound 
3 is replaced by alanine in a copper iodide-mediated reaction in 
dimethyl sulfoxide to give compound 4. The final step converts the 
carboxylic acid to carboxamide, producing inavolisib in 46% yield 
over the last two steps. After successful synthesis and biochemical 
characterization, inavolisib was selected for clinical trials to deter-
mine dose and route of administration.

Dosage and administration
The recommended dose is 9 mg orally once daily, with or without 
food. Treatment continues until disease progression or unaccepta-
ble toxicities occur. For adverse events or intolerance, the dose can 

Table 1.  Selectivity of some compounds

Compound PI3Kα Ki (nM) Selectivity PI3Kδ/
PI3Kα times

HCC1954 pPRAS40 
EC50 (nM)

Ratio HDQ-P1/
HCC1954

TPSA 
in Å2

LogD  
pH 7.4

Taselisib 0.090 1 24 2.3 118 2.3

a 0.346 22 89 1.4 110 1.9

b 0.188 14 ND ND 110 2.2

c 0.026 8 ND ND 130 1.5

d 0.043 46 ND ND ND 0.8

Inavolisb 0.034 361 19 4.4 113 0.8

HCC1954, hamon cancer center 1954 cell line; ND, not determined; PI3K, phosphatidylinositol-3 kinase; pPRAS40, phosphorylated proline-rich Akt Substrate of 40 kDa; TPSA, 
topological polar surface area.

Fig. 1. Starting from taselisib and compound a to clinical candidate inavolisib. 
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be reduced to 6 mg daily, with a second reduction to 3 mg daily. 
The exposure-response relationship for inavolisib’s efficacy (phar-
macodynamics) has not been fully reported. The time course of its 
pharmacodynamic response is unclear. No significant changes in 
cardiac electrophysiology were observed in clinical trials [Clinical 
trial number: NCT04191499].

Mechanism of action of inavolisib
Inavolisib is a selective PI3Kα inhibitor that blocks phosphoryla-
tion of downstream AKT, resulting in inhibition of cell prolifera-
tion and induction of apoptosis in PIK3CA-mutated breast cancer 
cell lines. It also reduces tumor growth in PIK3CA-mutated, estro-
gen receptor-positive breast cancer xenograft models. Inavolisib, 
in combination with palbociclib and fulvestrant, demonstrates 
increased tumor growth inhibition compared to each treatment 
alone or doublet combinations. It inhibits two mutations, PIK-
3CAE545K and PIK3CAH1047R, although these mutations occur 
in different regions of the protein. This suggests that a global con-
formational change may occur in the presence of these activating 
mutations.

The efficacy of inavolisib was confirmed in a randomized (1:1), 
double-blind, placebo-controlled clinical trial (NCT04191499) 
in patients with PIK3CA-mutated, HR-positive, HER2-negative 
breast cancers. The median progression-free survival was 15 
months for the inavolisib group compared to 7.3 months for the 
placebo plus palbociclib and fulvestrant group.

Binding mode
The X-ray crystal structure of inavolisib in complex with PI3K-α 
(PDB code: 8EXV) reveals that it binds in the adenosine triphos-
phate site (Fig. 3). The fluorine atom forms a hydrogen bond with 
Ser774.19 The oxygen atom in the oxazolidinone moiety forms 

a hydrogen bond with Asp810. The oxygen atom of the benzox-
azepine forms a hydrogen bond with Trp780. The NH on phenyl 
forms a hydrogen bond with Arg770. The carboxamide moiety 
forms three hydrogen bonding interactions with the primary amide 
of Gln859 and the backbone carbonyl of Ser854.

Pharmacokinetics

Absorption
The Tmax of inavolisib is 3 h, and its absolute bioavailability is 
76%.15

Distribution
The steady-state oral volume of distribution of inavolisib is 155 L. 
It is 37% bound to human plasma proteins.

Fig. 2. Reagents and Conditions: (a) CuI, K2CO3, dioxane, 100°C, 16 h, 50%; (b) L-Alanine, CuI, K3PO4, DMSO, 100°C, 2 h; (c) NH4Cl, HATU, DIEA, DMF, rt, 1 
h, 46%. 

Fig. 3. Hydrogen bonding interactions of inavolisib with phosphoinosi-
tide 3-kinase alpha (PI3Kα). 
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Elimination
The elimination half-life of inavolisib is 15 h, and its oral clearance 
is 8.8 L/h. The long half-life helps reduce the dosing interval and 
prevents excessive accumulation that could lead to toxicity.

Metabolism
Inavolisib is predominantly metabolized in the liver by cyto-
chrome P450 3A family. It conjugates with stercobilin, a product 
of heme catabolism.20

Excretion
Following a single radiolabeled oral dose, 48% of inavolisib is re-
covered via feces (11% unchanged) and 49% via urine (40% un-
changed).

Adverse reactions
During the clinical trial [NCT04191499], some adverse reactions 
(>10%) associated with inavolisib were observed, including head-
ache, nausea, vomiting, diarrhea, stomatitis, fatigue, rash, dry skin, 
urinary tract infection, and decreased appetite. These adverse reac-
tions were mild in severity (grade 1 or 2; no grade 3 or higher) and 
were manageable.

FDA-approved PI3K inhibitors include idelalisib, duvelisib, 
copanlisib, alpelisib, umbralisib, and leniolisib. Most of these in-
hibitors received accelerated approval based on single-arm clini-
cal trials. However, randomized studies have shown a decrease in 
overall survival and an increase in fatal and severe adverse reac-
tions. Consequently, idelalisib, copanlisib, duvelisib, and umbral-
isib have been withdrawn from the market due to concerns about 
severe adverse reactions and failure to meet efficacy expectations 
in confirmatory randomized, double-blind, placebo-controlled 
clinical trials. Alpelisib, a thiazole derivative, is a PI3Kα inhibi-
tor with moderate selectivity over PI3Kδ (60-fold). Inhibition of 
PI3Kδ can cause gastrointestinal and other toxicities. Inavolisib 
is more selective for PI3Kα over PI3Kδ (361-fold) and is there-

fore considered safer than other PI3K inhibitors. Indeed, alpelisib, 
used for breast cancer treatment, is associated with several grade 
3 adverse reactions (Table 2). In contrast, inavolisib treatment did 
not show any treatment-related grade 3 adverse reactions such as 
rash (0%), dry skin (0%), decreased appetite (0%), or urinary tract 
infection (0%). Moreover, inavolisib, which has a unique chemical 
structure, is both a selective PI3Kα inhibitor and a PI3Kα mutant 
degrader. Due to this novel mechanism of action, inavolisib dem-
onstrates prolonged and durable target inhibition, strong efficacy, 
a long half-life, and manageable adverse side effects (Table 2) 
compared to alpelisib. Other FDA-approved PI3K inhibitors cause 
gastrointestinal toxicity due to inhibition of the PI3Kδ isoform. 
Inavolisib preferentially inhibits PI3Kα mutants over the wild 
type. Therefore, previously approved PI3Kα wild-type inhibitors 
cause insulinemia and hyperglycemia. Several PI3K inhibitors, 
such as taselisib, GNE-326, GNE-102, pictilisib, and GNE-181, 
are clinical candidates or in preclinical stages. These inhibitors are 
not sufficiently selective against PI3Kδ compared to inavolisib, 
which is 361 times selective. Their half-lives are shorter than those 
of inavolisib. Additionally, their higher dose ranges contribute to 
increased systemic toxicities.

Investigators from Genentech developed inavolisib as a selec-
tive PI3Kα inhibitor and a weak degrader of mutant PI3Kα for 
breast cancer treatment. Jauslin et al. reported it as a strong PI3Kα 
degrader.10 Currently, inavolisib alone or in combination with 
other drugs is undergoing clinical trials.21–23 This mini perspec-
tive summarizes inavolisib’s physicochemical properties, synthe-
sis, mechanism of action, binding mode, pharmacokinetics, and 
treatment-emergent adverse events.
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Table 2.  Comparison between alpelisib and inavolisib: selectivity, efficacy, and adverse events

Inhibitor Aplelisib Inavolisib

Chemical structure

Selectivity PI3Kδ/PI3Kα (times) 60 361

Dosage 300 mg orally daily 9 mg orally daily

Half-life 8 h 15 h

Objective response rate (ORR) 36% 94%

Median progression-
free survival (PFS)

11 months 15 months

Adverse event (Grade ≥ 
3) in patients (%)

Stomatitis (2.5%); Diarrhea (7%); Nausea (2.6%); 
Vomiting (1%); Headache (1%); Abdominal 
pain (1.7%); Fatigue (5%); Rash (20%); Dry skin 
(0.5%); Decreased appetite (1%); Urinary tract 
infection (0.7%); Weight decreased (5%)

Stomatitis (6%); Diarrhea (3.7%); Nausea 
(0.6%); Vomiting (0.6%); Headache (0%); 
Fatigue (1.9%); Rash (0%); Dry skin (0%); 
Decreased appetite (0%); Urinary tract 
infection (0%); Weight decreased (3%)
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